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ABSTRACT

This is an investigation of the field due to a general point source of

energy in an isotropic, elastic solid with a free surface. The paper is divided

into three parts.

In Part I we are concerned with the development of new plane wave

representations for the fundamental solutions of elastodynamics. There are

two types of situdtion involved; we have the simpler type involved in the case

of a steady point source which moves steadily with any constant velocity in an

elastic medium, this type involves superposition of plane waves with respect

to a single parameter, and we have the more complicated transient problem in

which a point source is set up at a given moment, and thereafter moves at

constant velocity, without change of strength.

In Part II we make use of the new representation for the field of a steadily

moving source in the calculation of fields and displacements in the presence

of a free surface and in Part III we do the same for the transient source. We

discuss in some detail the application of the new approach to the case of a

vertical load, to a horizontal load, and to a couple of arbitrary orientation,

and we give a general discussion of the singularities to be expected for the

general point source.
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THE USE OF SINGULAR INTEGRALS IN WAVE PROPAGATION PROBLEMS; WITH

APPLICATION TO THE POINT SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM.

M. Papadopoulos

General introduction:

In this paper we shall consider the formation and the propagation of tremors

on the plane surface of an elastic solid. Although considerable research has

been performed in this subject, (see a complete bibliography for pre-1955 work

listed by Ewing, Jardetzky and Press, (1957), and for later work listed in the

1962 edition of Cagniard), the work to be described here is more general than

that of Pekeris, or of Cagniard (1939), and it introduces a technique which has

been found useful in the study of diffraction (Papadopoulos 1963e).

With others, Pekeris (1955a, 1955b, 1957, 1958) has solved a number of

problems, each concerned with the setting-up of a point source of energy by the

sudden application of a constant force or couple. Both Pekeris, and Cagniard

(1939), have introduced the same kind of mathematical method. Cagniard, however,

limited himself to situations with an axis of symmetry normal to the free surface,

whereas Pekeris (1958) has given one example, that of the buried torque-pulse,

where this property of symmetry is absent. In his paper Pekeris derived the form

for the vertical component of the surface displacement without giving any of the

detailed results for the horizontal components. Moreover, although he used

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin under Contract No.: DA-ll-022-ORD-2059.
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transform methods to develop his solutions, his avoidance of the delta function

in the definition of the point force and in the calculation of its associated field

introduces a note of inconsistency in the mind of the reader.

The problem to be solved here involves, in its most general form, the

sudden appearance of a point source which is moving with an arbitrary constant

velocity. There is no restriction oil this velocity, beyond that implied in not

allowing this forced action to carry the source through the surface without

specification of further source behaviour. The prototype of the energy source

is a point force of step function time dependence and of arbitrary direction.

Apart from implying that the most general source can be obtained from the point

force by a series of linear operations (vector addition, differentiation and

integration), we have no restriction on the type of source, and we have no

restrictions on symmetry or orientation.

If the moving source is taken in an infinite medium without a free surface,

the extention of known fixed source solutions to describe the moving field is

simple. This is because the field is composed of sheer and compressional fields

which travel independently and which may be described in terms of retarded

potentials (de Hoop 1958). It is also easy to take a specific source and to find

the moving field by transform methods as described by Eason, Fulton and Sneddon

(1956). When coupling between shear and compression effects is enforced at a

free surface, retarded potentials are certainly of no use, and the most direct

approach seems to involve taking the known field of a transient source at a

fixed point, and then superimposing the effects of a staggered distribution of
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such sources along the line of motion. Payton (1962) has used such a method,

but when it is applied to the point source moving with no acceleration, it seems

to be an overcomplicated approach. Physical interest in the case of a source

which moves on a surface is quite clear; for source motion inside a solid, there

is interest not only in possible earthquake motions, but in the effects of lines

of explosive charge due to the finite propagation velocity of the explosion, and

even in the enveloping effects of a sequence of discrete explosions as used in

sequential rock blasting.

The method to be described here will, in its generality, involve us in the

calculation of known results for the fixed source. In the process we find that the

results of Pekeris and Lifson (1957), for the vertical force are incorrect in the

vertical displacement component. The method is of special interest because

specific parts of the field are picked out without ambiguity; not only can we

pick out the singular parts of the field for the general point source, but we can

pick out the stages in the development of the head wave field as well.

There are three stages in the discussion. In Part 1, it is shown that we may,

in an infinite solid, represent the effect of a point force by an integral superposition

of plane waves. Both real and complex plane waves have a part in these

superpositions. The geometrical envelope of the waves linked with a specific

source forms a singular surface, or wave front, and within this front the field

at every point is found to be defined iva terms of values on complex conjugate

characteristics, while the field outside is similarly associated with real

characteristics (or plane waves). In separate sections we take the case of the
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steady source which moves with constant velocity, this being a steady state

problem in a moving system, and the case of the source which appears and then

moves steadily. The first of these leads to integral superpositions of plane

waves with respect to one parameter; it is described in some detail in order to

simplify the description of the transient problem in which two integration

parameters are needed.

For those who are familiar with the problems of wave propagation, the value

of having a plane wave representation for a source field is that the effect of the

plane surface may be found by treating each component wave as being reflected

and refracted independently of the other component wave. A formal superposition

of these reflected and refracted waves gives the total effect of the free surface.

In Part Z we discuss the structure of the field of the steadily moving source,

when it travels horizontally, and we calculate general details of the surface

displacement field. The special case of a fully supersonic point load moving on

the surface has been described previously (Papadopoulos 1963a).

In Part 3 we examine the unsteady source field. We discuss in detail the

surface displacement for a vertical force, for a horizontal force, and for a 'double

force with moment' with a specific orientation, this being regarded by seismologists

(Keilis-Borok et al., 1960) as a typical model for the focus of a tectonic

earthquake. The complete displacement field for an arbitrary point source may

not be found without quadrature, but explicit algebraic forms for all components

are derived both for the initial displacements linked with the arrival of primary P

and S waves, and for those linked with the arrival of head waves of shear, and
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for the singular surface waves due independently to the compressional and the

shear part of the primary source when on the surface. Of special interest is

the discussion of the relative strength of all the singularities which may appear.
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Part 1: Plane wave representations for fundamental solutions in elastodynamics.

Section 1: The steadily moving source

The method to be described here was developed in the study of acoustic

energy sources (Papadopoulos 1963b). A point source of unit strength moves

along the z-axis with a constant velocity a; the velocity potential + associated

with such a singularity is the solution of the equation

[c 2 2 -4 2 -6(x) 6(y) 6(z -at) = 6(x) 6(y) 6(t -z/a)Ia .(14ý
at ax y CIz'

Since this situation involves a steady motion in the z-direction we may infer that

the velocity potential depends only on three independent variables, namely x, y

and T = t - z/a . Equation (la) now reduces to the form

f 1 aZ 2 a2
y 2 T -ax I , = -6(x) 6(y).6(T)/a 

(lb)

2 22 -I
with y = ac(a -c ) ; in equation (Ib) we can see the well-known change

from hyperbolic to elliptic form as we permit a to pass from supersonic values,

with a> c, to subsonic values with a < c . The equations (1) are appropriate

for any real value of a . When a = 0 we have a static situation, and when

a = co, we have, after multiplying the right hand side by a , the equation

defining the potential of an infinit.a line source of unit strength per unit length.

For supersonic values of a, the transverse velocity of propagation, y, is

real, and the solution of equation (lb) has been given in the form
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2- RJ f 21 21 dp. (2a)
4,ra -00 (1-p ) [yT-pX-(l-p ) ysgny]

For subsonic values of a, the transverse velocity is imaginary (y = iý, say,)

and the solution of equation (ib) has been given in a slightly different form

with

iao 21- dp . (2b)
4-Za -iO (1-p ) [i T - xp-ysgny(l-p )2]

The main value of these representations is that away from the source, the wave

nature of the associated field is evident. Corresponding expressions associated

with strain nucleii will now be considered.

The eventual problem to be examined involves the setting up of elastic

disturbances in a homogeneous isotropic medium, of density p and with Lamd

constants X and ý, in a half space y< 0 with the plane y = 0 a free surface.

We set up the velocity vector v in terms of velocity potentials 0 and

(=A_+B.i+Ck), such that

v= + V Vx j , (3a)

and

V" =0 . (3b)

Given a body force F. the stress-strain relations and the equations of motion

reduce to the forms
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c • 2 V 2 ]V2 a=V-.F

tzat

and

a z" =~V. (4)
_ 2c2 v Z at

with pcI x+ 2 2 , pc c and c2 being the velocities of propagation

of P and S waves respectively. When a force p(X4 + YjL + Zk) is applied

steadily to the moving point x = y = 0, z _ at, L has the form given by the

equation

£ = (X + Yj + Zk) 6(x) 6(y) 6(z-at)

= (Xi + Yj + Zk_) 6 (x) 6 (y) 6 (T)/a , (5)

and the equations (4) reduce to the transverse forms

L _._ + (6a)

and

0 - 8 2 1 - •x 2+2.+ 2 2 - VxFE, (6b)
Y2 y2 8 Y2 ax2 ay2 a 8T S

2 2 2 2
with y 1 = ac (a _cl) , and Y2 -ac 2 (a -c 2 )

Equation (6a) has a simple solution, given as the inverse of a triple Laplace

transform by the equation
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2 2- f exp[sT_+ X X + yJ[XX+ pY-sZ/als dsd)d. d. (7

acI (2Ti)3 -i2 [s2-Y2(X2+ ]s 2 2+a2(X2 +'42

but because the integrand is homogeneous in the three transform variab'es we

may put X sp/y 1 , 4 = -sq/y, so as to reduce equation (7) to the form

Y1 i~o iOO (pX+qY+LZ) exp sCyIT-px-qyJ/yl

2 3 f ds ff 2 2 2 2 dpdqac 1(2ri)3 -iOO -iO (1-p2 -q ) (p +q +L)

with L = y1/a . The integration with respect to s may now be carried out,

so that

-¥I 00 (pX+ qY+ LZ) 6[YiT - px - qyJ/y 1

22 -f - q2 )2  2  +2 ) dp dq (8)clI a (2riz -0 (1 _ q )(p +q +L )

the presence of the delta function is meaningful only as long as the function

(y1 T - px - qy)/y 1 is real. In the work being considered it is not always possible

to assume this, and the delta function must be regarded as having an alternative

singular form, with (8) taking the form

2

22 R j i (px +p 
dy + )(9)

41r 2ca -oo -oo 7(l-p Z-q )(p +q +L ) (yiT - px - qy)

Away from the point singularity, 0 satisfies the wave equation, and the

2 2
integration parameters must be restricted to the circle p + q = I . Thus for
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arbitrary p, q may take only the values q = *(l - p2) and in turn this

means that the q-integration involves only the calculation of residues at these

2_1
points. We specify the branch of (1- p )Z by taking the p-integration path

along the real p-axis, with indentations taking it above the point p = 1 and

below the point p = -1 . With this convention we have

I R f (pX+(l-p2)1 sgnyY+LZ
= 2a 21 -_ dp . (2a)4Tr a 0 (I-p )' [yiT-px-ysgny(l-p2)X]

or, following a change in scale of the integration variable

S+(M -1 )a Y sany + LM Z dp (11a)
47r a -0o (M -p ) [y2T - px-(M -p )I y sgnyj

with M = y?/y, < 1 . These representations are only correct for fully supersonic

source motion, with a > c1 . For the range a < c,, the transverse velocity

Y1 is imaginary, with yI = i~1 , say, and the results of simplifying the integral

(7) are slightly different, taking the integration paths for both p and q along

the imaginary axis instead of the real axis. To correspond to the formula (10a)

we have the integral

1 Rf X + I-I ) a Ysony+ IZ] dp (10b)

47r a -ioD (I-p)2 [iRT-px_(l-p )a ysgnyj



#386 -l1-

The integral (11a) keeps its form when a > c0, but it changes to

1 io 2-2
42 RlfrPx+ D I(M -P ' Y sgn Y+LMZ1 dp (11b)

4a -_a (M -p r8 [i.- 7-px-(M -p r y sgny]

in the case of fully subsonic source motion, with a < c ; when yZ = i•Z

The three cartesian components of j satisfy equation (6b) and may be

written in the form

1 RI f [LMY-Z(I_-p,) sgn y] i + [pZ-LMX]i_+ [X(1-P 2 ) sgny - pY]k
4ra -= (l-pzl- dp

(IZa)

when a> 0, or

L1 1.. i{[LMY-Z(l - p )2 sgnyj.+[pZ-LMX] +[X(l-p sgny-pY]k}dp

47ra -Iio (1-p 2 ) [ 1 T - px-(V- p )Zysgny]

(12b)

when a < c 2

Notice here that as the source velocity is varied and the transverse velocities

take positive imaginary values, the other velocity parameters, L and M, may

also take imaginary values.

The potentials which correspond to other steadily moving strain nucleli may

easily be constructed by superimposing the results for simple forces. Thus two

equal forces acting to oppose each other in the x-direction but with a moment about
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the z-axis may be taken in a limiting form as a 'double force with moment'; the

potentials in this case are

00
scin y t R1 P dp
4ra 2  atRi 2_ 2*d

42r ay, -0 [yZ -_px_(M -p ) y sgny]

and

sgny a f [(1-p ) 2 sgnyk-LMiJ2  at dp.
47 ay, -00 [N[y2T-px-(l-p ) 2 ysgny]

Similarly a combination of three equal orthogonal double forces without moment

gives the potentials

1 o 2 QL22 at R1 f 2 ? dp
41a2 a-0 (M 2 -p a[yT -px-MZ-p ) ysgny]

and , = 0 . This being a constant real multiple of the time derivative of the

potential for an acoustic source, we might concentrate attention on this acoustic

source as being a simple case which does not produce shear, while to take

account of shear the simplest case is that of the simple force. A detailed

examination of other strain nucleli (e.g., as listed by Love (1927) in the study

of elastostatics, or by Keilis-Borok (1960) in the study of seismology) is not

needed here. Thus in addition to the potentials (11) and (12) we have to refer to

the potentials of a moving source of unit strength, in the form

00 z
4=- a R1 f 2 2I dp (13a)
4i a -o(M-_pzp ) [y 2T-pX -(M -p ) ysgny]
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when a>c,, or

4 Ia -f (M2  1Z Z dp . (13b)
4 a -00 -p 1 r [i• 2 T-px-(M p )1 ysgny]

Each of the integrals given may be reduced to an explicit formula. The

process involves shifting the formal integration path to the curve on which the

wave function of the denominator is real. On this path the integral is singular,

the Cauchy principal value is either zero or imaginary, and the only real

contribution to the potentials comes from the residue at points for which the

wave function vanishes. For supersonic motion there are two conjugate zeros,

while for the subsonic case there is only one. Real zeros of the wave function do

not, in the integrals given, provide real residue contributions to the potentials.

Each one of the integrals has a singular geometry. In all cases, the source

point is a singular point of the integral, and in the supersonic cases there is a

singular (conical) surface to contain the source field. These singularities are

determined by the simultaneous vanishing of the denominators of the integrals

and their derivatives with respect to p . The conical surface is seen to be

the envelope of plane waves generated by the source. The property that complex

zeros of the wave function are the only ones to provide residue terms that matter

for the source fields is equivalent to saying that these fields are determined by

complex plane characteristic surfaces passing through each point of observation.

The details are similar to those given previously (Papadopoulos 1963b).
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Each plane wave in one of the given singular integrals is reflected and

refracted at a plane boundary just as if it were a real plane wave. In order to

fix ideas we shall consider the case of a point source moving at a uniform depth

h below the free surface of an elastic solid in the plane y = 0 . Away from

the source point the potentials must satisfy the equations

(14a)

[vz.@r->=2-1 a/ -
c 1 at 2

and

VJ =A +B +C =0 (14b)x y Z

for y _ 0 , while the conditions of vanishing stress at the surface are that

a 2
at Tyy= V 2R 41 yy +Azy -xyC = 0 (15a)

Tt- T yx = ýL [2+ + Axz - Cxx + C yy-B zy =0 (15b)

t T yz= R[ +A -A -C + B =0

for y = 0 . The third condition may be combined with (15b),(14b) and the

wave equation to give the simpler form

82
at By =0 (I c)
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which implies that the potential B is an even function of y about the plane

y=O .

In the absence of boundaries the source field is of two slightly different

forms. For y > -h, we have a general source field in the form

F 4+ B.L+ C
RIf ? dp, J" Rlf dp-p )2 [y 2T-px-(M-p) 2(y +h)] - (p 2 ) [yT-PX-'(l-p )a(y+h)]

(16a)

with
21

pA+ LMC +(l-p z B =0

For y < - h, there is the corresponding form

F A. -+IB L+C k
RI 'i'zj 2 h dp, i--RI f -) dp(M-p1'Y T-px+(M -p )2(y+h)] -- (1-p } [yT-px+(l p )2(y+h)]

22

(16b)

with

S* LMC*-(-p

It is presumed that the functions F, A, B, C, F , A *, B* and C are real

functions of p when the transverse velocity parameters are real. The integrals

(11), (12) and (13) are those we have specially in mind to provide explicit forms

for the nunerators of the integrals (16), but there is no restriction to these. We

may also consider derivatives of these integrals with respect to t, just as we

may consider more general linear operations with respect to t as may be needed
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to provide results for sources which vary with time. From the conditions at

y = 0, it follows that we may write down the scattered field in y < 0 in the

form

4,=R ( 2 1 F2 2 + s • • dp ,

2f(MZ-pZ P) y2T -PX+(M -P )(y-h) y + -X+(M -p )ay-I-p )zh

___Rlf __L A p_+BC__ k As-- + BSL+ Csk h2! 2 2* 2, 1 d

w-p R(p) - (l-p 2 y - h(M _p2 )2 yT-PX+ (y-h)

(17)
where

R(P) = (1 - LM? -M p ) + 4(1 - p )?(pL + L )M (18a)

the scattering coefficients linked with the primary P field are defined by the

equations

Fp + F R(p)= 8(l-p)2 (p2+ L2M) F r

C n pAp = /LM = -4p(l - p )a (1 - LZMZ 2p2) F (18b)

and

B = 0

while the scattering coefficients linked independently with the primary S field

are defined by the equations
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F. = 4(MZ-p2)(1- ZMz 2pZ) (pC - LMA)S

2 2

[CS + C R(p)] = -p[A S +AR(p)]/LM=8p(M-PZ)Z(I - p ) (pC-LMA)

(18c)

The integrals (17) represent the extra field which has to be added to the primary

field (16a) in the region 0 > y > - h, and to the primary field (16b) in the region

y < - h . The field expressions for a source of the same form travelling on the

free surface are to be found by taking the results in the region y < - h in the

limit as h- 0 .

A general discussion of these results will be given in Part 2.
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Section 2: The transient point source.

We have dealt in Section I with the fields of steadily moving sources;

these fields have been derived in the form of integrals of singular plane waves

with respect to a single parameter. To give similar forms for transient point

source fields involves us in integrals of singular plane waves with respect to

two parameters.

We shall consider first the solution of the equations (4) when the body

force F is given by

L = (Xi + YL+ Z&) 6(x) 6(y) 6(z) U(t) . (19)

The equation for the scalar potential o has the solution

1 i exp[st+ Xx +ýLy+vz](XX+gY+vZ) dsdk dpLdw , (20)

(2Tri) -i00 [s -cZ(X +1 •-+v )]X, + + v+]

this being the inversion of a quadruple Laplace transform. The integrand is a

homogeneous function of the four transform variables, and we may therefore put

= a-s,/cl, ý = -sa/c and y = -sa 3/C to derive the expression

1_ c 2lz fff ( + + a 3Z) 1 d d d 3  f exps[c t'-cx-azy- a3z]/cl

(2Tri)4 - a ( 2- a 2- 2 - )(a• + a G + a2 1 3 ) -icc

-0 (alX+a 2Y+ 3z) c1
7-23Ri fff 21 Z 2 2 1 dal da dc3

c1 -00 T 2 (1-aI a 3 ) (01 +o2 +o 3 )(clt-O1X-02 Y-0 3z)
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This expression satisfies the wave equation away from the origin, and for

2- 21
given al, 13l @2 is restricted to one of the values tf= e(l -a a3 ) . Thus

the whole integration with respect to a2 must involve only residues at these

two points. Here we define the branch of the radical so that the real a -axis

passes, with indentations as required, above the point a2 = P, and below the

point a2 = - P . These poles give the residue contribution

I Rf Go i(&IX+azY+a 3Z) sgn y da d , (21a)83 f-- aZ [Clt-e Ix-& 3Z - azY] d1r d3 2a

8Tr 3 c I _00 (c 1t- 1  3 2y

with a2 = sgn y, or, on dividing both integration variables by m = c2 //c,

I i(a 1X+a 2 Y+a 3Z) sgny

3 Uc a (ct - atx-a y-a da 1 3

with az =rsgny, a= [ a -a 3 .

In this integral it is required that the 'slowness' variables be represented by

a point on a spherical slowness surface of radius m . The integral is therefore

invariant under rotation of these variables, this rotation may be chosen to

simplify further calculations.

The equation (4), which defines the vector potential tp, may be solved in

a silmilar fashion to give

=__._ l• 0 sgny[(Ya 3 -ZP 2 )i + (ZaI-Xa 3)+(X8 2-Yal)k-]
-83 R-mf (Ct- " da da (22)

8y = z8 _0 zC (cxt-aPx-p-y0a3 z) P2 1 3
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with p2 = p sgn y . Note that the wave functions of both the integrals (Zlb)

and (22) are identical in their behaviour on the plane y = 0 . This property

has been chosen deliberately to simplify the matching of P and S waves at

the free surface.

An expression of similar form for the scalar potential of a dilatation source

of unit strength is

00
R1 t dad . (23)

8Tr 3c. -00 a (c 2 t-aIx- 3 Z-aysgny) 1 3

Simple extensions of these formulae may be obtained to cover the case of a

transient source which moves with constant velocity. In this situation the body

force is

F = (Xi + Yj_+ Zk)6(x-v 1 t) 6(y-v 2 t) 6 (z - v3 t) U(t) . (24)

The effect of the motion is to introduce into the integrand (20) an extra

homogeneous factor s(s+ X vI+ pLv2 + Vv3) . The details of the subsequent

evaluation are not changed; the motion of the source leads us to include in

the integrals (21b) and (23) and extra factor

V1 = cO(c2 - a Iv1 - a 2v2 - a3 v3)-I (25a)

while the integral 2Z has the extra factor

V2 = c?(c. - *ivl - P2 v, - ' 3v 3)-I (25b)
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With integration paths already chosen as curves on which the wave function is

real the general set of potentials associated with the appearance of a source

at the initial point x = z = 0, y = -h may be written in the form

iFV 1  ,~

*Rlifo( 0 2t -a o- a3z - ~y +h)] 13

i[Ai + BL+Ck]V2 dVz d
PPRl r[c.t - l . 1 - a 3 z - p(y+h)] 1 3 (26a)

for y+h>0, and

iF V

R=lffa[czt a.Ix-a 3 z+ a(y+h)] dI do3

i [A*i + B *_+ C *kJV*
p=Rlff P[C t-elx- aX-a 3 z+P(y+h)] da1 da 3  (26b)

for y + h < 0, the two representations being needed to eliminate in the

numerators the function sgn(y + h) . (These expressions, of course, represent

only potentials of degree -1, but to give a general form for a potential of degree

-n we need only differentiate the integrals (26) (n -1)-times with respect to

t ).

Given a primary source with potentials of this form, the effect of a free

surface in the plane y = 0 is to introduce scattered potentials, in y < 0 is to

introduce scattered potentials, in y 4 0, given by
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S= ff c 2 t.Xa z yh)+ tz+•_.h} do1 do3  (27a)

and

A i +_ + C- A+B_+ CS S
R_ = Ri ff oct - jx- 3 z +Py -h +c-t- 1 x -a•zZ+(y-h) d d+dod 3 . (27b)

Then, with the function

R = [1 -Za - 2a3] + 4 aP(a 2 +) a (28a)

appearing as a determinant of the boundary conditions (15), we find the scattered

amplitudes of each individual plane wave from the equations

FRV1 = 8ag2 + a23 ) FV1

C -Apa / 3 -4 Pa1 (1-Za - 2a Fv,

B =0 (28b)

and

+ CRV2 :-[As +ARVz/a3 :=8 lap1 [Ca1 -A. 3]V2

2 2Fr = 4(1- 2a- 2@3) [C& 1-Aa 3 JV2 ,

BS = BRV 2 -PR[Aal + Ca 3 ]V2 (28c)
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The expressions (28b) and (28c) are quite independent, the former represent

reflection and refraction coefficients linked with an incident P wave, and the

latter are linked similarly with an incident S wave.

In the region 0 > y > -h, the total field is given as the sum of the

expressions (26a) and (27); in the region y < -h it is likewise given as the

sum of the expressions (26b) and (27). The case when the source is formed

at the surface is obtained by taking the field in y < -h and then allowing h

to vanish.

One restriction remains to be mentioned here. Positive values of v 2 will

bring the source to the surface when O, < t < h/v2 . The associated field

expressions are therefore valid only in a restricted region, and a complete

description of the subsequent field has to follow a choice of the subsequent

source motion.
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Part 2: The steadily moving source in an elastic solid with a free plane surface.

Section 1: The simplification of integral solutions, and the field structure.

We shall first examine the means for simplifying integrals given in general

form as in equations (1. 16) and (1. 17), for the case of fully supersonic source

motion. For the primary source potentials of equation (1. 16), the evaluation

is performed by shifting the integration path from the real p-axis to the curve

on which the wave function of the denominator is real. Thus, for the primary

dilatation field of equation 1. 16a, the wave function

y 2 T - px -(y+h)(M 2 -1 (1)

is real on the hyperbola p = M cosh(w+iO) for -00< w< 00, with e=arctan(y+h)/x .

The branch of (M2 - pZ chosen has a positive real part, with
2 2

(M2 2p = -iM sinh(w+ 10), in order that the wave function (1) be part of a

disturbance which moves in the direction of increasing y .

With 0 chosen and the branch of the radical defined in this manner, it is

clear that the wave function (I) does not vanish when r < 0 . With given

positive T , it has complex conjugate zeros on the hyperbola p=M cosh(w+iO)

for 0 < [x2 +(y+h)2J* < y1T, and it has real zeros if [x2+(y4h)2]½>YWT . It

follows, having shifted the integration path from the real p-axis to the locus of

complex zeros, that there are three distinct contributions to consider. First the

shift in path involves us with residue contributions from real poles; for the

primary source terms these residues are strictly Imaginary, and do not contribute
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to the field. Second, the line integral along the hyperbola is singular (the path

is shown in figure la), but the Cauchy principal value has a zero real part. This

is because the integration path is symmetrical about the real p-axis, and the

contribution to the real part from the lower half of the path annuls that from the

upper part. The third contribution is the residue contribution from the complex

poles; for the primary dilatation field these are at the points

yjrx * i(y+h){{y• 2 - M2 [x2 + (y+hh)2 1Z
x + (y+ h)

and these appear only when YlT > [x 2 +(y+h)2 ] > 0 . The bounding surface

2for this residue contribution, a section of the cone ylT =x + (y+ h)2 > 0, is a

singular surface of the dilatation field. It is associated with double zeros of the

wave function, that is, with points for which both the wave function and its

derivative with respect to p vanish: this is the precise definition of the

envelope of the individual plane waves. It marks the boundary surface for the

contribution of residues at complex poles, i. e., for the effects of the conjugate

complex characteristics of the wave equation.

The primary potentials (I. 16a) and (1. 16b) reduce in this manner to the form

{yT - Rl[ -

M 2(y2 h)]I[F (pifor y+h>0

RIF p,] ory +h < 0 , (2a)
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2 2

with pl[x +(y+h)]½ =yTx -i(y+h){y 2 T2-M [x +(y+h) ]}asgn(y+h)

and yiT=y 2 T/M>[x +(y+h)Z] >0

while

22 2 r R1[A(p)L + B(p) + C,(p h ] for y + h> 0
Y2(y+h)R [A*(p) L+ BS*(p)+ C *(_ 2 fory+h< 0

(2b)

with
2 2 Z

P[xZ +(y+h)Z]Z =YTX-i(y+h)[y r2T -x -(y+ h)ZJ sgn(y+ h)

and

Y2T > [x +(y+h]2 > o

For completeness, it should also be mentioned here that the shift of

integration path should involve contributions from the circle at infinity. These

make no contribution to the field unless specific points in the vicinity of the

source are being examined or if T - 0 .

The integrals (1. 17) are a little more difficult to evaluate. They are

distinguished by the presence of the function

R(p) = (I-LLM Z-p 2 • + 4(l-)pZ)(M2-pZ (p2+ L MZ' (3)

This is a characteristic function defining the transverse velocity YR of Rayleigh

waves. It has zeros at the points p = =R=Y2/YR, where YR=acR(a-CR)
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this result being easily deduced from the limiting two dimensional situation

when, with a -- oo and m =c /cI

Z2 2 Z(l 21 M I
R(p)-. (I-zp) +4p (1-p _ (mzp p) = 0

is the equation with roots p c ' c/cR defining the actual velocity vR of

Rayleigh waves.

The zeros of R(p) are poles of the integrals (1.17) . They may only be

linked with singular surfaces of the scattered field if they are actually poles of

second, or higher, order, and this is the case only if the wave function of the

denominator vanishes with RKp) . It is clear from the form of equation (3)

that R(p) will not vanish except for real values of p with Ipi> 1 . Other

(complex) zeros which are found after R(p) is made rational are not zeros which

can be associated with the branches defined for the radicals. The wave functions

for (1. 17) may not vanish, however, except in the single case with h = y = 0 ,

y being restricted to non-positive values in these expressions. Singular

Rayleigh waves do not occur except, on the free surface, for sources set up on

the surface.

Notice that the integrals (1. 17) are of two types. The first integral for

and the second integral for j are simple in structure, being integrals of plane

waves originating at the singular image point y = h, x = 0, z = at . These

integrals are, in turn, reflected P and S fields. They are evaluated in the

same manner as the primary field expressions, by shifting the path of integration
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to the curve on which the wave function is real. For the P field there is nothing

new to discuss; we have only residue contributions from conjugate complex

poles to evaluate and this defines a field contained between the surface y = 0

and the image cone y1T =[x 2 + (y - h) 2 ]a for T >0 . The reflected S field

2 2 1contained within the cone y2 r = [x + (y - h) ]2 is obtained from the complex

zeros of the wave function, but there is an extra complication to be examined.

The function R(p) contains branch points at p = *M, with M < 1; the locus

of complex zeros of the wave function

yzT-px+(yh)(lp (4)

is bound to cross the real p-axis at points with IpI < 1 and [pI > M if

arccos M > Iarctan(y - h)/xI > 0

Then, as shown in figure (lb), the shift of integration path will involve a

horizontal singular loop integral about one or other of the points p = & M as

well as the singular integral along the hyperbola. Here we find that only residue

terms from real zeros of the wave function (4) make a real contribution to the

field, with the principal value of the line integral vanishing in its real part.

These real zeros of the wave function provide real plane wave contributions to

the reflected shear field, they are naturally outside the singular envelope of

plane waves which contains the effects of the complex poles, and these head

wave contributions appear only between the cone yT = [x2 + (y - h)]2 > 0, the

plane y = 0 and the tangent planes y2 T = Mx-(y-h)(l-l)M .2
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Thus the reflected P field in y < 0 is

Zir ;F(l1

41 2 2 2 Zr2 ?1~ I JRI ((5a
{y 2 T - x +_(y h) R(pl) (5a)

for

Pl[Xz +(y-h) = Y2Tx+i(y-h) Y T - M [x+(y-h)

when

2 2'ylT>[x +(y-h) 12> 0

The part of the reflected shear field inside the reflected shear cone is

2T RAS(P2) i + Bs(p2):+ CS(py} - (5b)
22-2 22 R(2P2
2T -x (y-h) LJ

for

pj~x? +(y - h) y= rx+ i(y-h) [yT -x -(y-hJ•h)

when

22
Y2 T >[x + (y- h)] > 0

The associated head wave contribution is

2  Im As(P)-i + Bs(P).L + Cs(P) k =

=[x +(y+h} ImR
SP=PH

(so0
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where pH is that value of the roots

Z Z1
yirx*(y-h)[x +(y-h) -yYT T

x +(y-h)2

2 21
which lies between the point p = x[x + (y - h) ] and the origin.

Now notice the following property. In any given section of the transverse

plane, the reflected dilatation cone does not appear below the free surface,

with its interior field contributions, until T = h/y 1 . Similarly, the reflected

shear cone appears below the surface when r>h /y2 " On the other hand, the

a 1

planes yr = • Mx-(y-h)(I- M ) a, which are tangent to this reflected shear

cone and which are the fronts of the head wave contribution can not appear

below the free surface until yT = h (I - M 2 2 when p = M is a double zero

of (4) . There is therefore a period when the reflected shear field is present

without a head wave contribution. The two stages in the growth of this field

are shown in figure (2),

The remaining terms in the integral (1. 17) are more difficult to evaluate.

This is because the refracted wave surfaces which are envelopes of the plane P

offom pI-y( 2  21 2*Iwaves of form y-px+ y(M p )2 -h(l - p ) and of the plane S waves of

form y7 - px +y(lp -P p h(M -pP)a are not of circular section, and hence

may not be linked with simple analytic curves in the p-plane. What is clear,

however, is that the locus of complex zeros of either of these wave functions may

be determined, these zeros will appear in conjugate pairs since we are considering,
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for the moment, only real values of y? , and therefore the only contribution

from the new integration path comes from the conjugate zeros of the wave

function. The possibility of real plane wave contributions to these refracted

fields does not arise, since with M< IpI < 1, this being the range of real

values of p where we have seen the possibility of contributions, neither of the

refracted wave functions is real.

This completes the discussion of the scattered field in the case of fully

supersonic steady motion, except for the following remarks. When h = 0, the

distinction between the singular reflected and refracted wave surfaces vanishes;

they are all of circular section in the transverse plane and all residue contributions

may be written down explicitly. Likewise if we restrict attention, for h * O, to

the free surface, the wave functions for the refracted field lose one of the

radicals that makes calculations complicated, and again all contributions at the

surface may be evaluated explicitly.

For subsonic values of the source velocity, a great deal of simplicity is

lost. As the source velocity a is reduced from an infinite value, the point

p = M migrates; for a > cl, M decreases in value from m = c 2 /c 1 < 1 to zero,

it becomes negative imaginary when c1 > a > c 2 , and it becomes real, approaching

the value 1. From above, when c 2 > a-• 0 . The parameter L merely changes

from real when a > c1 to positive imaginary when a < cl, while the solution

p = R of equation (3) has the complex behaviour of y? as long as the source

velocity is greater than cR . When a < cR, It might be expected that like the
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parameter M, R is real, but with R > I; however, with the branches chosen,

the function R(p) of equation (3) is not able to vanish in the correct range.

This merely means that for sources which move steadily with a velocity below

that of Rayleigh waves, the function R(p) has no zeros, and thus there is no

possibility for Rayleigh waves to be set up.

Apart from this point which is given special mention, there are no surprises

in the form of singular surfaces. The singular dilatation surfaces vanish when

a < c , the singular shear surfaces vanish when a 4 c?, and the wedge-shaped

Rayleigh singularity present on the surface for a surface source vanishes if

a < cR . The other parts of the calculation are complicated, both by the fact

that the Cauchy principal value of the integrals on the locus of zeros of the

wave function is no longer pure imaginary, and by the fact that shifting the

integration path involves the calculation of loop integrals about the branch points

p = • M . Given these integral contributions, one might do just as well, in

general, by evaluating the original integrals on the formal integration path. If,

however, there is special interest in fields close to points and surfaces of

singularity, then the shifting of path is useful, because the complex zeros of

the wave functions appear to provide as residues the most singular part of the

field near the moving source, while the real double zeros of the wave functions

will give information about field behaviour near the wave envelopes.
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Section 2: Surface displacements.

Given the integrals (1. 16) and (1. 17) as general representations for the

velocity potentials 0 and I, we may calculate both the velocity and the

displacement field vectors without difficulty, by carrying out the appropriate

differentiation and integration processes within the integral sign. Since the

displacement on the free surfac3 is the physical quantity of most interest, we

shall restrict attention to the vicinity of the plane y = 0 .

With the source buried, the potentials of interest are obtained by adding

the integrals (1. 16a) and (1. 17) . The velocity vector v is VO+ Vx P ;

this implies that the velocity field, linked in part with shear and in part with

dilatation, is homogeneous and of degree -2 in space and time variables. The

corresponding displacement vector u is therefore represented by homogeneous

wave functions of degree -1 .

For the buried supersonic source, the surface displacement is reduced to

three terms. These are given by the equation

u=-R1 f Z~ 2~ ••+Lk)( 2) ÷ [I 2z -2p dp (6a)

-0 Y2 R(p) [Y2 T - PX- h(M - pZd6

-RI; 4(pC-LMA){(p_+ LMk[•l-L 22--2p 2-2{M2-p2) iJ-( 1 + L2M2},(M--p dp-00 y2 K~p} [y 2- - px - h(l-p p2) (6b)

rl" 21i rLMB C(I-p2 ½j+2k [A(Il-p2* - Bp]

+ y 2 (lp 2 ) [yZT px - h(l p2-½] dp (6c)
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The integral (6a) is derived from the P waves produced by the source, while

the other two integrals are derived from the S waves produced by the source.

The integral (6b) is seen to contain the function R(p) in the denominator,

while the integral (6c) does not contain this factor. The significance of this

property, to be biought out later in more detail, is that the integral 6c makes

no Rayleigh wave oontributions of any kind, although some effects of this kind

are produced by (6.) .

When the source is taken on the surface, the displacement field has to be

derived from the limiting forms, as h -• 0, of the potentials (1. l6b) and (1. 17)

At this point apparently the most concise way of defining the surface displacement

is to take the limit as h - 0 of the integrals (6) and then to add the correcting

integrals

R'f (pi + LM )j(F-F*)+J.(MZ- p•)(F*+F)-w ! dp
y-(y 2 (Y2T-px)(M p (7a)

go [ * *+ ( 2*- 2 1.
+ RI f __(C +C)(l-p )2 +LM(B -B)IJ+.[LM(A-A*)-P(C-C )]+k[P(B-B )7(1-p )2(A+A 11 dp

SYZ (yI-px)(l-pz2)) Ib
(7b)

this contribution is, however, identically zero.

When the source velocity a is taken in the intermediate range c1 >a >c 2 ,

the velocity parameter M takes negative imaginary values as the transverse

velocity of P waves becomes imaginary. While this is the only formal change

to be made in the integrals (6) and (7), it will be found that there are line
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integral terms to complicate the solution as well as residue terms. When the

source velocity is fully subsonic, besides the changes in the velocity parameters

which follow the change of both the transverse velocities from real to imaginary

values, the formal integration path is changed from the real to the imaginary

axis, and an extra imaginary constant i is present as a factor in the numerator,

just as in the integrals (1. 10b) and (I. lZb) .

In the fully supersonic case, with F a real function of p, the integral

(6a) is the sum of conjugate residues at complex zeros of the wave function,

at any rate in the case h * 0 . The limiting form of this sum as h -0 must

also include a residue contributions from one of the Rayleigh zeros p = * R ,

because in this case one of these points lies on the locus of zeros of the wave

function.

Thus for the buried source, the surface displacement linked with the primary

dilatation field is

_4•¥I YM2 2! 2M? __pR (M p [2(pi+LMkJ(l -p) +t.(lL 2 M2 _zpZ)JF a

c 2(y 2T2Z h- ) -- F (p) (8a)
2 1 p Pi

YZTx-xiMh( [T -h -xfor P , 2 1 h 2
x +÷22 2-2

and with lxi < (YtI T-h )z . For the surface source we take the limit of the

expression (8a) as h -. 0, and the additional Rayleigh residue contribution is

4r 2  [2ip i + LM _J (p2- 1) + (l LZM2 - 2p) F
2C j (dR/dp) sgn x J 6- /yR] (

p=R sgnx

(with the radicals in F taking positive imaginary values).
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-81r RI ZP-M )l- 2 !{ [l LZNý 2 Z( 2a ) 2X2+L~j-Jl 2M? Z2'y22 [ 2 h2- -h{]LMR1 R(p) J
(9a)

with
y 2 TX - ih(y2T - X -

P2 2 h2P2 = x +h2

2f 22- 2When xI>(x T-
Whe, (2T h the real zeros of the wave function of (6b) give the

head wave contribution

-8w sgn x I (pC-LMA)(1-p 2 ) i+LM_[L- p 1p
S-.- -p2)12' Ym22-z,.. N-p •-1+.. (,-,,}

(x +h -2T ) { y2 R(p} p=pH

(9b)

whth 2  2 2[s 2 2 2 21

with p H =yYTXhsgnN +x y ) ]/(x + h ) and with the radical (M -p )

taking the specific value, '(pH - M 2 , at this point. It is implicit that the

head wave contribution only appears when IpHI> M; this limits the expression

for the surface displacement to the range (y. 2 
- h ) < jxJ < ¥yT - h(l - M2)2/M

In addition to the contributions from 9a and 9b, taken in the limit as h -• 0

the field for the shear source the surface has as a contribution from the Rayleigh

pole, the singular displacement

81r2 RI I(pC-LMA) pit+LMk)[L2M-2P+(p2- p J+L 2 Xp2 -ft)dP) [-Ix/

(9c)
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for p = R sgn x, with positive imaginary values for the radicals in the bracket

pC - LMA .

These representations are complete. Special notice may be taken of the

singular contributions for the surface source field due to the singular point

p = R sgn x; in general we find both a localised singularity in the form of a delta

function (as in (8b) and (9c), and a singularity (from (8a) and (9a) ) which

is locally antisymmetric about the point lxi = yRT . These contributions are

not present in the case of the buried source because the integration path does

not then pass through the points p = * R . However, when we evaluate the

residues (8a) and (9a) at any point within the circles Ip - R sgn xi = R - 1 ,

we may replace the function R(p) by its Taylor expansion with the leading term

of 0(p-R sgn x) . For a given x and h the minimum value of this factor

occurs when y22 = Rixi; this minimum %elue is small if h<< x, and itis

found that a surface disturbance whose amplitude is O(x/h) will pass a fixed

point with the velocity of Rayleigh waves, with its peak seen for yRT = [x' .

Without numerical work it is not possible to say whether this maximum is

noticeable when h/x is not small. It is however implied in the formulae (8a)

and (9a) that the quantities p1 and P2 are complex; the application of Taylor

series to the residue (8a) is therefore restricted to the range h< ixI(R- - 1).

These limits have been mentioned elsewhere (Ewing et al., 1957), and they

differ from the empirical result given by Pekeris (1957).



-38- #386

Part 3: The transient moving source in an elastic solid with a free plane surface.

Section 1: The simplification of double integral solutions.

For the steady supersonic source we have given a fairly detailed description

of the process by which integrals of singular plane waves may be reduced to

simple residue calculations. For the double integrals associated with a

transient source, the evaluation is much more difficult; with two integration

parameters there is no unique choice of complex paths, for each parameter, on

which the wave function takes real values.

Fortunately, while we are dealing with propagation in an isotropic medium,

we are able to determine a large amount of information in the manner described

below. The simplest situation involves the reduction of the point source fields

in the absence of a boundary. In the integrals (1. 21b) or (1. 23) we have

specific integrals for the dilatation potential of a fixed transient source. In

these integrals we are free to shift the 'slowness' parameters (-l, 2.g,_ )

c c 2 c

around the surface of a sphere of radius m = c1 /c ; we may put a =(m2 -p2)*q
2 2 2 1

and a3 = (m- p)2 (1-q )a, so that a = p, and we are to evaluate the integral

o0 Rl ff ~~i F(P. q) pd()Rl/ 2 2 2 1_ 2 1_ pd

S)- 2 {c2t -(m -p)2 [qx+((l-q )'z]- py sgn y)

where, in the case of a source of unit strength,

F = 1)/83 , (2a)
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and, in the case of a point force

F =-[zp )[qX+( - q )½Z] + pY sgn y}/8w c Z .(2b)

For x =r cos 0, z = r sin 0, we may choose a complex path on which

q = cosh(w+io) sgn z, (lIq 2 )a = -i sinh(w+iO) sgn z

so that

ZI
qx+(l-q Yz = r sgn z cosh w

On this path the integral (1) has the form

dR i4F[p, cosh(w+ +0) sgn z] + F[p, cosh(w-io) sgn z]f jdw RI r 2* . dp. (3)
-00 -0 [c 2t - (m -p ) r coshw sgnz -py sgn y

As long as the function F(p, q) is a real function on the real axis of both variables

when jqj< 1 and jpj < m, (as it is in the specific cases given in equation (Z)),

there is a real contribution to the integral (3) only from residues at conjugate

poles of the integrand. The integration path for p is taken, just as in the

simpler case of steady motion, along the locus of complex zeros of the demonimator

for fixed values of x, y, z as t is varied. The principal value of the integral

along this path is easily shown to be the difference of conjugates and hence

imaginary, but the residue contributions from the zeros of the denominator give

a real expression. Thus then the complex zero in the fourth quadrant of the

p-plane is at the point p = p1 where
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2 2 22 2
c2 ty sgn y- irm oosh w (c 1 t-y -r coshz w))

2 2 2 (4)
y + r cosh w

2 2'
this being a possibility only if, for cIt > R = (r + y )z > 0, w is restricted

to the range for which cosh w < (c tZ -y ) /r . The evaluation of residues at

P1 and its conjugate point gives the result that

1 .[(m -P, j){F[PI, cosh(w+ie) sgnz]+ F[pl, cosh(w -ie) sgnz]}]
Zi=-r2f Rt 222 2 I dw

0 m(cIt -y -r cosh w)z

with w1 = arccosh(ctI - y ) 2 /r . This is the only contribution for the fixed

transient source. With F given as in (2), the finite integration can be carried

out explicitly. Note that the only contribution in these integrals is confined to

the interior of the wave surface R = cIt, which is a singular surface for the

integral (1) because it is the envelope of the singular plane waves given in

that expression. The same treatment leads to the potential for a source moving

with subsonic velocity, the whole of the field being contained within the

spherical wave surface R = c1t . Thus if we take the case of a transient source

which moves along the y-axis with a velocity a we have to examine the integral

00 i c2 F(p 1q)
O=R-l ff ! ? ! 2 dp dqff01q )(l2q[)Zc -asgnyp]{czt-(m -p )a[qx+(l-q z)z]-py sgny}

(6)
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When a < C1 , the pole p = c 2 sgn y/a can be identified with a specific value

of p1 only when r = 0 and y = at, and this merely gives us a singular value

at the source point for the complete field in the form

*Zi 2 c2 1w~ R 202j I - Rl, 'm -)aT F[pl, cosh(w+iO) sgn z] + F[Pl, -Ioshjw-iO) sgn z.
0 [c 1 t -y -r cosh w] j(c -a sgn yp, ['"i II

(7)

When a>c,, the same pole lies between the branch points p =* m, and it

coincides with a real zero p = p2 of the denominator of the integrand, where

2 2 2 2 2
c1 tysgiy*mrcosh w(y +r cosh w-C 1 t

p2 =2 2 2y + r cosh w

The point about these real zeros is that neither is capable of generating a real

residue contribution to the integral (3) or (5) unless the remaining factor of

the integrand is non-real, or singular, at the point concerned. There is an

important choice to be made here. For the integral (6) only the smaller value of

P2 can make a contribution in this manner; this is the value which lies to the

left of the locus of complex zeros for a given y, r. Thus when, for y > 0 and

R > cIt, we are able to find a p2 with the value c2 /a and we may take the

residue at this point in the negative sense to obtain the additional term

2 Wy 1  R I F0c / a . c) d q ( 8 )a -0 (1-qz)t [Yl (t -y/a)-qx -z(1 - q 2
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This term is clearly a steadily moving supersonic field trailing behind the source

point and contained within the singular conical front defined by the equation

ala2 Z-•
r = yl(t-y/a)>O, Y1 = -C 1

this cone being a tangential surface to the sphere R = c1t.

The reason for choosing the pole to lie to the left of the complex integration

path is that this restricts the conical -ontribution to the region between the wave

surface R = c1 t and the source point. If the other real zero of the wave function

is involved, it produces the complementary conical field trailing behind the

sphere R = c1 t, but only for y > 0 . This is not permissible because it involves

discontinuity across the fixed surface y = 0, and this plane is not a

characteristic surface of the system.

To make the same point more explicit, we should state that in the integral

(I), the formal integration path for q is along the real axis except for deformations

below q = -1 and above q = , and that for p is also along the real axis, but

passing below the point p = -m and above p = m, above the smaller value of p2

and below the larger value of p2 .

The importance of the choice of this path is made more evident if we change

variables of integration, putting P = (mi2 p2}) and (m2- p2 p Then with

2 2 100 i P F[(m -P )I, q] CZ dp dq
2l 2+[c 2- 2 sx 2 2*(1-q2Am p 2[c-am2 p2 ) rsgn.y]c.t-qx. 1 .q ) z)-(m -P2) ysgny]

(9)
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the supersonic contribution of this integral is found to be linked with the real

zero of the wave function which lies to the right of the complex integration path

and which coincides with the point P = c2 /y 1 for y> 0 . For the purpose of

deciding the sense of integration at complex poles we may take the formal

integration path for P along the real axis, below the point P = - m, above

the point P = m, and below the smaller and above the larger of the real zeros

c tr cosh w* my(yz +r coshz w-c2t )

P = 2 ? os2 2
y +r cos w

The next point of difficulty in the evaluation of the scattered field is

connected with the presence of the characteristic Rayleigh function

R = 1 2 2 3 a2 + 4 2 + a 2

which, because it has its own zeros, can contribute its own singularities to

parts of the field. If we choose

Z-
pl a Pq 3 = p(l-q )

with

2 2 2

then

2 2 2 2* 2 2 JR = R(p) = (1 - 2p ) + 4p"(1 - p" (m - p2)1

and this function is easily recognised to have zeros at the points

P = * cZ/cR

C R being the velocity of Rayleigh waves.
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The characteristic function R only appears in the expressions 1. 27 for

the scattered field in the region y < 0 . The complex integration path for

these expressions will only pass through these Rayleigh zeros when for a surface

source with h = 0 the point of observation is also on the surface with y = 0

Only in this case do we find a singular surface wave associated with the

transient source. For the source which is initiated at a depth h, there will

be found, when h/r << I, a disturbance, which travels with velocity cR I

whose amplitude is O(r/h) . This point arises just as in the case of steady

source motion. Even when the buried source moves towards the surface after

it is set up, there is no singular surface wave until the source arrives at the

surface, and then only because whatever may happen to the source there is

bound to be a transient process at this moment which will set up its own spherical

wave surfaces.

We have been discussing the various difficulties which arise in the

evaluation of the dilatation potentials. The same difficulties also arise in the

discussion of the shear potentials, but there is one more special situation,

linked with the presence of head waves.

Head waves arise in the reflected shear field part of the integral (I. 27b)

If we make the choice of aI and a 3 as given in the equations (10), it is

clear that although the wave function contains only the branch points p = * 1 ,

the remaining factors of the integral (specifically the Rayleigh function R )

contain the branch points p = * 1 and p = * m . We have now the possibility

that real zeros of the wave function can appear in the range m< I Pi < i , where



#386 -45-

the Rayleigh function is complex, and from these zeros we can find real

contributions to the potential. The head wave contribution arises because the

refracted P field travels faster along the surface than the associated shear

field, and is incapable of satisfying the boundary conditions there by itself.

The support for the head wave field is thus on the plane y = 0, and therefore

it is real zero of the wave function which lie between the branch point p = m sgn z

and the complex locus

2 -22 2
c2 tr cosh w sgn z * iy (c 2t -y -r cosh w)

2 2 2y +r cos w

that is the zero

[c tr cosh w + y (yZ + rz cosh 2 w - cZ t)Z]

2H- 2 sgn zy + r cosh w

which gives a real residue contribution, with the range of w restricted to keep
2 Z I

pHI>m when (y +r) =R>c2t2

There remain only computational difficulties in the evaluation of the total

field due to a transient source. The primary source fields and the reflected

fields can all be written down explicitly as finite integrals with respect to w

the ease with which these integrals can be found being linked with the simple

nature of the associated singular wave fronts (they are either spherical or conical).

The refracted wave fronts are not so simple to define without the use of parameters,
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but because the complex zeros of the wave functions arise in conjugate pairs,

there is no doubt about the reduction of the p-integration to a residue calculation;

these zeros however are found as solutions of a quartic algebraic equation.

Finally it will be repeated here that the structure of the scattered field is

determined by the singular surfaces for the integrals (1. 27), and these surfaces

are determined by the condition that the denominator and its derivatives with

respect to both integration parameters vanish together. There is no difficulty

in this calculation.
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Section Z: Calculations of surface displacements for a vertical force.

We may derive expressions for the surface displacement due to the general

point source with a homogeneous potential of degree -1 . The potentials

(1. 26) and (1. 27) are first differentiated to form the velocity and then integrated

with respect to time to form integrals for the surface displacement. For the

transient source which appears at a depth h, we find three distinct integrals;

these are, first

00 iFV {2a(a1 L+ a ý] + (I- za -2 za

Ul = f L 3 Y (lIa)

second

4 iv 2 (ca1 - A 3 {( i+ 4 3 R_(l -ca 3 11 -2 a -

USR 2. -00 R(al,a 3 ) [c 2t-axa3 zI- a23- dP1 da3 , (l1b)

and last

00 iV 2{[Ba 3-CPJ I-+[LAPh-Balwk-

US CZf 00 PLC 2-31 dI1 d-3 (llc)

Of these integrals, the first is linked directly with the primary P field; the

others, linked directly with the primary S field, differ in that the last is a

simple horizontal displacement field which contains neither head wave nor surface

wave contributions, while (llb) will be shown to contain both these contributions
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when appropriate. (The reason for the simplicity of (lc) is that the potentials

2- 2_ Z nrhA, B and C may contain neither the radical a = (m2- a 3) nor the

characteristic Rayleigh function R(a1 , a 3).) These integrals, with h = 0, are

correct expressions for the surface displacement when the transient source is set

up on the surface.

The pure dilatation source, with F constant, A = B = C = 0, is the

simplest case to evaluate, but since a head wave disturbance is not present

for the buried source, certain aspects of the process of evaluation of the

integrals (11) are not brought out. The simplest case we can take for a detailed

examination is that of the transient vertical force, acting at a fixed point. For

the vertical force Y we have the potentials

2 FZy 3 0 3

-(mp Y/8 c B = 0 and Ai + Ck -Yp[(l-q ) _- qkJ/81rC.,

(12

with V1 =V 2 = 1, these being the forms when a3 = pq, 3  q

The integrals to be evaluated are

!0 2 1 2
o ipm p )pl{jL(1-_p )+2p(l-p )2[qL+(1- )?k])

S=4-pR1/f 2* 2, dqdq ,

up r3 .J)J 2~l ~ z( ZpZ 2h)
_ 4U - (l-q) R(p){c 2t-p[qx+(l-q

(13a)

00 222 2 2 ~ 2 2 I
U ip {p[q°+(l-q) 2 ][l"2p -2(lP )2(m -P P) ](m" p )Z dpdquS R = - 3- -' ff 2 _ 2 iL 2

2V cUS-0 (1 - q0)0R(p{c t-p[qx+(1-q )?z]-(l-p )I h}

(13b)
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and

cc 2 (qj++l-q )Z zJ'(l'p2)ih)
U f ....... -. Z] - 2i2dpdqUs " 3 2 R 1 qf 2 2c1t
41r c2  -oo (l-q )c t-p[qx+(l-q )zz]-(l-pp)3h}

(13c)

Now take the integration path for q into the complex plane; with

x=rcosO, z=rsin6, q=cosh(w+ie) and (l-q )? = -i slnh(w+i6)

(with a restriction to z > 0 in order to simplify the writing down without losing

any generality) we find that on this path the contribution from w < 0 is the

complex conjugate of the contribution for w > 0 . Hence the q-Integration may

be reduced, in part, to an integration for positive w , with the contributions

Y f dw Rl f Am -p f [(-p 2l+ Zp(I-p )?cosh w dp (14a)
="3"--• 2 z dp , 4a

--P, 2V c 0 R(p) [c t-prcoshw-(m p ) h]

where r

•)R Y fdw I f 3 {2 Cosh wfl- 2pZ, -Z(l- pZ) ( - p .(m. P pS- R 2 0 -00 R(p)[c 2t-prooshw-(l-p )2 h]

(14b)

and

Go 0c 2
f =-_--jfdwRlf p coshw.r , (14c)

SZ ir c2 0 -00 c t-prcoshw-(lp2)2 h

following simply from the integrals (.13)
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The integration with respect to p may be carried out in the usual manner.

Thus in (14a), the only real contribution to the integral comes from residues at

the conjugate complex zeros of the wave function, and these complex zeros

are only present under the restriction that cosh w< (c 1 t- h )2 /r . Thus

arccoshct - h ]Z /r

........ = fdw 2 2 1 fR{G (p1 )
U r c 2  (c 1td- h -r cosh w)2

where

2 2 2 2 _
c2 tr coshw - imh (ct 2 -h -r cosh w)Z

hl 2 + r 2cosh 2 w

21 22

where both the radicals (l-)- and (mi - p ) have positive real parts when

p = pI, and where

2 2 2
G-(p) P(mz - p2) [I(l - 2p) + .- _ p(l - p ) cosh wj Y

m R p)

This integral is only present when 0 < r <(c t - h . To reduce it to a

simpler form, we may make the real transformation

c2t2- h - r2 cosh2 w= (c t -h -r 2 sin2 X

and we have the result that
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u P1= 212 f RI{Gl(pl)) (15a)

2 0

within the singular P circle r = (c1t 2
- h2 )a

With

2 2 22 1
Z c 2 tr cosh w - ih (ct h2 

- r cosh2 w)2

h2 + r coshz w

with positive real parts specified for the radicals and under the transformation

222 h2 2 2 22 2 2 2
c 2 t h r cosh w = (C~t -h r) sin ji

the shear field contributions from complex zeros of the wave function are

ir/2

UMR 2 2 1 o dcs RI {G 2(p 2)) (15b)
-SR ir c2r coshw

2

with

4 22- 2 * 2 1 2 1 2 .1 2 3
G ()Y{p (1-p )'coshw[l-2p -2(1-p )2(m -p-)Y-2(1-p )Z(m m-P )2p }

Z(P2 - R(p)

and
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U [ a h l {G3(P2 )} (15c)
S Z r cosh w

with

2 2 ?

Gs() Y -p)2cosh wr_.

22 2!
inside the singular S circle r = (c 2 t -h )2

For the buried source with h #0, the integrals (15a) and (15c) are the

only contribution to the surface displacement to be derived from the integrals

(14a) and (14c) . The integral (14b), on the other hand, contains both the

contribution (15b) linked with complex poles of the integrand and a head wave

contribution as well. There is a real residue contribution from the real pole

P = PH where

c ztr cosh w - h(r2 coshw+ h2 _ct2 t
DH 2 2 "

h2+ r cosh w

this contribution appears only when pH > m . This condition imposes the

restriction that r cosh w < cIt - h(l - m ) 2 /m . With the change of integration

variable given by

2 2 h2 22 2h2 2
r cosh w+h -czt =(r2 +h -c 2 t )cosh2 A
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22 2 2'
we find that for (c t -h )2 < r < clt - h(l-m )?/m

A1

u(1) 1 dA Im {G2 p (15d)USR - 2 2 coshw ' (lHd)

with

21
czt(l-m )-1-h

A =arcc
m~r + h C 2ta

This is the head wave contribution for the buried source.

Notice that for points on the compressional wave front, p, = e(l - h 2 /c~t 2)t

is constant and the integral (15a) takes the simple value

uG)l= G (pl)/21rc r

with w = 0 . On the shear front p2 = (1- h 2 /0ct )2 is constant, and the

integrals (15b) and (15c) similarly that the simple values

_SR = Gz(p )/27rc r

and

US = G3(p,)/Zwr c2r
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with w = 0 . These simple expressions are the initial displacements on the

surface linked with the arrival of P and S waves; they agree with the results

of Pekeris (1957) for the horizontal components of displacement, but for the

vertical component they do not. (His initial P displacement lacks the factor
2 22½

(I-h /cI t ) , and his initial S displacement lacks the factor

2 22*
h(l-h /c 2 t ) /czt .)

The integral for the head wave is also simplified at the front of the S wave.

The integrand (15d) reduces to a constant, but the integral becomes

logarithmically infinite together with the upper limit, A1, of integration.

Pekeris also notes this logarithmic singularity; we differ in that he places it

just inside the S wave, instead of just outside, and in that his formula for

this logarithmic singularity in the vertical component lacks the factor (1 -h /C 2 t

For the surface source, the integrals (15) have to be evaluated with h = 0

This is not a uniform limit of the case for the buried source because the

integration path involves real values of p to the right of p = m, thus passing

through the Rayleigh pole p = R . Thus with the total surface displacement

field (14) written in the more concise form

.2 2 2- 2

0" 2* 2 a i Jp coshwRI f dw f pm -p) 'J-[l-2p -2(1-p)!(m -p ) 1p %AV

27r 3 2 0dw R(p) [c 2t- pr coshwj dp2Zwc2 0 -c
2 (16)

and with the p-integration path shifted to the horizontal loop to the right of p m

we find a number of distinct contributions. These are
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ZY 2 t/r (- 2p 2 )(p-mZ) p[(-p2): +(I - p2 )2 rc t/r]
U 2Y f 2 4 2 2 22 A dp, (17a)

iru2c 2 [(l_2p2)4 +16p4 (1-p 2)(p 2m2)](c2t2_p2rr d
2i 2

m

when m<c 2 tk< 1, and

1 222 2)-2Y p(1-2p2)2(p2-m ) p(l-P )2rc 2 t/r

~ 2 1 2 4 22 22 2 2  dp (17b)
"" c2 JC • (lo- p2 )4 + l6p(1-p _ )(pc - m2) (c2  - p2 r2

m

c2t/r 2 2-

2Y f1 p- m )dp (7c)- 2( - 2 1( 2 2_ p, 2 r d2(Ic
I c2 [(I-2p )-4p (p2-1) (p -m ) ](c 2 t -p 2 )

2Y R-c 2 tOr (17d)

i2 D(R) (c2t-Rr)

where D(R) = [dR(p)/dpj = -8R[6R4 (1-m2 )+2R 2(2m2 -3)+1](1-2R )2 ,

p=R

when c 2t/r> 1 for (17b), (l7c), and c2 t/r > R for (17d)

The expressions (17a) and (17b) come from the contribution to (16) of

the range m < p < 1, (17c) comes from the range p > 1, and (17d) comes from

the single point p = R . No other real terms are present. The integrals (17a)
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and (17c) contain a singularity at p = R if c 2t/r>R

The integrals are easily identified with those given by Pekeris (1955a); we

differ in the value of the coefficient of the final Rayleigh wave term. It is noted

that the integrals (17) may be simplified; the vertical component may be

evaluated explicitly and the horizontal component reduces to forms involving

incomplete elliptic integrals. This work has been done by Pekeris (1955a).

(What is most interesting is that the surface displacement field may be found in

its simplest form by an alternative integration process (for (13)) involving first

the calculation of residue contributions from the zeros of R(p) due to all the

branches of the radicals (I -p p)2 and (m2 - p), and then the evaluation of

the q-integral in the usual manner. For the vertical component the q-integration

is simply a matter of calculating residues, and this is a simple way of noting

the existence of a lacun&, already seen by Pekeris. The horizontal component,

however, involves quadratures. The alternative method of integration which is

centred on the existence of multiple sheets for the Rayleigh slowness surface

will be discussed elsewhere. J

Notice finally that the appearence of Rayleigh singularities for the surface

source is accompanied by the simultaneous reduction in the order of singularity

linked with the arrival of P and S waves. Where for the buried source we

expect a step function singularity for the P wave, or a step function coupled with

a conjugate logaritmic singularity for the S wave, the surface source field has

the same singularities in its first derivatives, and is therefore continuous in its

displacement components.
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Section 3: Surface displacements for fixed sources with an unsymmetrical
displacement field; the horizontal force and the couple with arbitrary
orientation.

The value of the present method is that the evaluation of the surface

displacement field from the integrals (11) is not made any more difficult if

there is no axis of symmetry. Having just considered the case of the vertical

force, with its obvious axis of symmetry, we shall now examine the case where

a horizontal force Xi is applied at a point below the surface of an elastic solid.

With the potentials

r xpq/8 ir3c., A-=-, B-=Xp(I-q- /8n 3 c2 , 2 C-X( -p )2/8v 3 c2

(18)

the integrals 11 take the form

00 2 2 2 2
X F ip q {2p(l -p )[qi+ (1- q )2 cJ+ (1- Zpzi

u- , R , L Z 1 Z a - dpdq
24- c -co R(p)(l-q )}{c t-p[qx(l-q )Zzj-h(m -p )`}

(19a)

00pq~- ?Zpq.I(~ )a l2p ~2(i LZ 2 2 22S i a )2q ' -21 I -p )27 -p_
U = --- J•! [ dqdq,

2 ¶rc2  -00 R(p) (1 -q )I{c2 t-p[qx+(I-q ) 2 z]-h(l-p )2}

(19b)

and

3 7
i ff qqi+(-q )2J dpdq

US 3 2 f 2~ 2~ 1-- 4, c. (1 - p )21-q )2 {c 2 t-p[qx+(1-q )?zl-h(1-p,}

(19c)
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It follows, with the abbreviations cosh w = c, sinh w = s, 1 =_i cos e + k sin 0

and 9_=kcos 0-1 sinO, that

G 2  2 2 [c2  s2Gl(P) m R(p)=_Xp2(m2_p }fl-2p2)ccosOj+2p(!-p )a 2[c2_cosO{+S OsinG],

(20a)

2 2r _(m2 -p)1 c se 1 2p - 2(1- ) (m 2
G2 (p) R(p) = 2Xp2 (1 - p 21½_ 2 c Cos ej + p[l - 2p - 2(1 - p2(m - p

•c 2rCos 0+ s2 _sin 0]

(20b)

and

G3 (p) = Xp [Lcos 8 (1-pc) -2 sin B (1 + p, s)] 2 (20o)

these being the three expressions needed in the integrals (15) to define the

surface displacement for the buried source.

For the surface source we have the additional term associated with the residue

at the point p = R . The complete contribution to the surface displacement of

this residue is restricted to the region r < cRt, with the form

2 221Xt [1-2Rz + 2(RZ- 12(R -m )211

2 2D(R 2 2*2 c2 rD(R) (cR-t _ r

The field due to the sudden application of a couple is of interest to

seismologists; this is the point source model of symmetrical shear in the focus

of tectonic earthquakes, with symmetrical displacement in relation to a plane of



#386 -59-

rupture, and with movement of the sides of this plane in opposite directions

(Keilis-Borok 1960). The couple is therefore to be taken as the limit of a double

force with moment, with the force acting in the plane of rupture.

We specify that the couple is of moment M, that it acts in the plane z = 0 ,

and that the component forces in this plane act at an angle E to the plane y = 0

For the couple of step function time dependence, the velocity potential and the

displacement field are both functions of degree -2 in space and time variables.

To keep within the structure of the calculations of this paper, we shall be

considering the surface displacements given in the equations (11) and these

must subsequently be differentiated with respect to t . It might be suggested

that the result for a couple is easily found by taking the results for a force and

differentiating in the appropriate direction; this process is however available

only when we have explicit results for the field both on and off the free surface.

Thus we use the potentials

F_ M [pqcos4 + (m -p ) sinf][pqsine -(im -p2 cose,

8c 2iT
2

IA p(l -q 2 sina

B - 3 [pqsine -(1-p2 )cose] -PC -q 2) sine
8 c 2  ,I"

c t ig (al- p a )w dosei -pqsenqn (it)

In the integrals (11),, and we derive the quantities
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[2p(l-p • c r + (1-2p 2 sin 2e [p~c~cos 2e- p s sin 2 + p - m 2

Gl(P)2m c0 R(p) -2(m 2 [ p 2 c os : cos 2,

2 2 -` +pXm _ p )am 2 =- +

P2 2 22 21 2 2

{pc [1-Zp -- 2(-) (m - p )] -J.(m - p

Gz(p) cR(p) P(I - p2) s 2sin2 9 sinE cos a

2 +

2Mp(1- ) 1 R 2)*cosa -pccos0sint][c(l-p .)E Cos 0Cos p sin eI

-ps sine'_e1-zp - 2(1-p ) a(m - p PI .

Spsine [c(I-p 2 ) cosecose -psinc]+

+( -p 2)• Cost [l - p ) acosiE - pc cos esin e]

and

2 [p(I - p2) isint "(l-p2c2) cosecose]l

[pccos)0ssin 10 22 +
G3(p) C2 p c )cosEsine

Mpp 2s2 sinOsine{ cpcose sinO -_e[pccos Cosee(l-p2)Isin,]

(22)

The functions Gl(p), G2(P) and G3(p) are used in the time derivative of

the integrals (15) in the calculation of the complete field for the fixed buried

couple. Note that where for the buried force the initial P and S field is a simple

discontinuity, i.e. a step function of displacement, the couple will be associated

with initial delta function displacements.
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Section 4: Summary, with a description of the singular parts of the surface
displacement for the general point source.

In the earlier parts of this paper, we have discussed the details of

calculation for the surface displacements produced by a point source. The

usual problem in which this information may be useful is the one of recognising

the type of source which produces a given displacement field. It is in this

context that knowledge of initial displacements is of use; we shall therefore

conclude this paper by giving results for the singular parts of the surface

displacement field for the general point source.

The velocity potential for the general point source of order (n+ 1) is a

homogeneous function of degree -(n + 1) in space and time variables; it is

given, for y > 0, by the integrals

00 i FV
Rn d1 dada
at -40 a[c 2t-0Ix- 3z - ay] 1 3

Go iv [Ai+B÷.+CCk]

) R _zctx-az-py dI

witha=(m a ,) and P=(l-a 1 _a

The functions
c

2
V1 2(c2 - 1 1 - a3 v3 -av 2)

and
V2 =( - 0 vL - 23v3 - Pv2)
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introduce the effect of steady motion for t > 0, the source being forced to move

with the point x = v1tP y =v 2 t, z = v 3t . The prototype of these potentials

is related to the force p(XI + Yj + ZkJ; when this acts at the origin we have

a first order source for which

-8r 3c2 F = XaI +Ya +Za 3  83Ac2 = ZP-Ya 3  8r3 Bc2 =Xa3 -Za 1

and

813 Cc 2 =Ya1 -X•

Other point source fields may be obtained by differentiation or integration of

the point force field. The general form given arises because for the functional

dependence given, we always have the identities

a a ~-a38 @1 8 8 "3 8

8x c2 8t ' az c 2  at

for a compressional field which moves in the direction of positive y

8 a 8
8y c 2 8t a

and for a shear field

a a
8y c2 at

For the initially buried source, with a velocity restricted to subsonic values,

the surface field contains three circular fronts on which the displacement field
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or its derivatives are singular, these being associated for r=(c 1 t -h) 2 with
2 1

the arrival of the primary P waves, for r=cIt - h(l-m )a/m with the arrival

of the refracted P waves and hence of the head waves of shear, and for

r =(c t - h )? with the arrival of the primary S waves.

For the first order source the first arrival is a step-function P wave, given

from the integral Ila with an amplitude

2 2 -_21 -1

42 p(m 2 P)P F(alf a 3) Vl(al, a 3) [2p(l-p2)ar+(1-2p2)j]

"2 R(p)

where for z>0, 0 = arctan z/x, this is evaluated with a =p cos 0,

221
a 3 = p sin 0, p = m(l-h h/c 1 t 2  and with positive values for the radicals

?1 2 ?
(1-p ) and (m -p

For the shear field there are the distinct situations linked with the ranges

h< c2 t < h/(l-m )P or c 2t> h/(l-m )a . For the former range, the refracted

P field has not separated itself from the incident S field., there is thus no

head wave of shear, and the arrival of shear is marked by a step function of

amplitude

2 21 2 - 2 2 2!

47r (I-p ) V2(al, a 3) [C cos O-Asine0[p(l-2p, )r-p (m -p ) j]

c2 R(p)

4w2 V{ a, a 3) B
C 2
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where V2 , A, B and C are evaluated at the points a= pcos e, 1a =psine

with p = (1- hZ/c2 t2  • When head waves are present, there is no discontinuity

in the displacement field associated with their arrival, this for the first order

source. The same step function is present at the arrival of the primary S waves,

but it is clearly masked by the conjugate logarithmic singularity associated

with the head waves. This contribution has the form

2 2 ?

l61r A 1 Vz (C cos 0 -A sin p)] {1(1 - 2p ) + p(l - 2pZ) (1 - pZ) }(pZ, ma

c2 [(l - 2p2 ) 4 16p4(1 - p,) (p 2m2)]

2 2 21
this just outside the circle r = (c22 t - h 2 , with V, A and C again calculated

at the points a1 = pcos , a 3 =psinO, when p=(rl-h /c 2 t) 2 >m and with the

logarithmically large quantity A defined by the equation

c2t(lm 2 )a - h

A arcoh 2 2 2 21 m(r +h -c 2 t)

These are the singular arrivals for the first order source. Each differentiation

increases the order of the source and makes the singular contributions more

singular. For the source of order (n+ 1), the leading singularity linked with

the arrival of the head wave is the (n - lk-th derivative of a step function, i. e.,

the function 6(n-2), with an amplitude proportional to the vector

j(l-Zm)+mr .
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The arrivals associated with the principal wave fronts are more singular. The

primary arrivals are dominated by the nth derivative of a step function i. e.,

the function 6 (n-), while the logarithmic head wave singularity leads to the

conjugate function of degree -n, a continuous function which is 0(d-n ) as

the distance d from the S wave approaches zero in the head wave region.

The relative magnitudes of the various components of displacement are the same

as for the first order source.

If the source velocity is supersonic, we expect conical singular surfaces

to trail behind the source point and to be tangential to the spherical wave

surfaces linked to the setting up of the source. Only if the source point is

2 21A
outside the sphere [r + (y + h)}Z] = c1t and above the tangent surface

2 2 2 2 2r(c 1t -h h C= ct -yh will the P cone cut the plane y = 0 to show a new

singular wave on the surface; this will be a segment of an ellipse if the source

point is below the lowest point y = - h - c1t of the corresponding spherical

P wave (i. e., if v 2 < -C1t) otherwise it is a segment of a hyperbola. Likewise

only if the source point is outside the spherical S wave and above the tangent
2 * 2zz 2

surface r(c22 -h = c2 t -h will the S cone produce its effect on the free

surface, and again if v2 < -c 2 there is a singular wave of elliptical form on

the surface, and this becomes hyberbolic if v 2 > -c2 .

These singularities in the form of conic sections are of the type found in the

description of steady conical fields. For the P wave due to a source of order 1

we find specific displacements on the singular front in the form
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-402vr G(0l, w3) 41

a 2 [c 2(t - /a) 2 -(in 2 -c 2/a 2 )(42 +112*jal

2 * 2 2*

where v =(v 1+v , a =(v +v ) , and

2 ~ FIa 1, a31
G(a 1, aI a [2a (alL +a D + (I- 2a21 _2a2 -a3

R(a 1 , 33)

with

VIVr I - ViV2, - a 3 V3Virl - v 3v2? 2 +avl'3
F av 3  avr r

and with

2 2* 2 2j

aj1 = C q' '3 = cI(ta-g) ' Y'2 cl(ta-i)

for

agu VX + v2 h + v 3z ,

2
av 1 z -vv X+v rh-v v z

12 r 3 2

and

a4 = -v3x + VIZ .

The singular displacement for the conical S wave is of the same type. We

take the same values for a1 and a3 , but we are to evaluate the expression
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4w2 vr H(aj) a3)

2 2 2 22 22
a[c 2(t2- 4/a) (*-C (/ 2 M c)]2

(a2 -_ 2 1_ _- 2

when q$ =c l/a, -c2(at- •) a ;, and 2 c(at- •) '1

with

2(Ca ~ 3-a )aiL h1-2a~ 2_2a~ 2-2a a
2(0a a 1  3 3k r 1 3

3 R(al, a3)

(Ba 3 - CA).L + (AS- Ba3) k

p

For a range of values which makes the radical (m 2 a1 _ a 2)f imaginary, there
1 3

is a head wave contribution; this fixes the head wave singularity in the form

2i

- 47r yvr I InIH(a 1,a 3 )J

2 222

The arrival of the head wave, linked with the arrival of refracted P waves, Is

not marked by discontinuities of displacement.

For the higher order source, differentiation with respect to t is necessary;

the source of order n + 1, moving steadily with supersonic velocity, has conical

wave fronts on which the singularity is 0(d
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As a final contribution we shall discuss the source which appears on the

surface. In addition to the limiting forms of expressions which are found for

the buried source, the effect of the singularity due to the Rayleigh function is

to give extra contributions in the form

= 87 2 {(l- 2R 2) Rl(rVI). - 2R(R 2 - m2)2 Im(FVr.}
U~p PC c ,2 -rZt 2

c 2 d (R) (c~t2 r2

and

(2 161 ,R [If-R 2 + 2(R2(R _mR1_ )a]R(A• + (R2-m2) Im(0) 1
SR 2DR 2-2- 2 D(R) (cit - r

within the circle r = cRt . Here,

4 =V 2(Ccos O-Asine) ,

is evaluated at a1 = R cos 0 a 3 = R sin 0, with the radicals a, P taking

positive imaginary values, and with D(R) defined as for the equations (17)

If the source moves on the surface with a velocity greater than cR) a

wedge-shaped Rayleigh wave is set up. If it moves with a supersonic velocity

there are conical S and P waves set up; all the details of these steadily

moving fields may be picked out of Part 2.

The surface source of order n+ I sets up transient P and S waves which

are 0 (d )n+) near the wave front, while the conical P and S waves associated
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with steady supersonic motion are 0+(d-2) . Thus for the surface source

the P and S arrivals are of the same singularity as the head wave arrival

for the buried source.

The Rayleigh wave produced by the setting up of the source is O(dn-)

near the wave front, this being comparable with the arrival of steady conical P

and S waves for a buried source. The strongest singularity is that of the

steady wedge-shaped Rayleigh wave for the moving source, this being U(d-n-1)

All other parts of the surface displacement field are infinitely differentiable.
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p=-I p=l

p=-h p=-m PM p=R

Figure la: The formal integration path passing below singularities at p -R,
-1, -m, and above those at p = m, I and R, together with the actual
hyperbolic path of integration, deformed to pass round conjugate complex
zeros of the wave function. Residues at these conjugate points determine
the field inside the characteristic wave envelope.

Figure lb: When the locus of complex zeros passes between the points p- m.
and p = I, the actual integration path must be composed of a hyperbola
with a horizontal loop round the branch point p = m . The complex zeros
of the wave function again determine the field inside the characteristic
wave envelope, while real zeros determine the field in a head wave region.
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refracted S wave

Figure 2: The structure of the field due to a primary source of dilatation.
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source

reflected S

refracted V

h ad wave regions

o 4-- suc

reflected S

Figure 3: The structure of the field due to a primary source of shear. Two
stages are shown. Before the wave front of the primary field begins to
travel at the critical angle, the wave fronts both of reflected S and
refracted P waves travel together along the free surface. At a certain
instant the refracted P wave meets the free surface at right angles,
and it may only continue to travel at the velocity of dilatation waves by
breaking away from the incident and reflected S waves. Head waves
of shear now appear in order to satisfy boundary conditions at the surface.
The two stages shown indicate the Initial development, and the subsequent
breakaway of the refracted field.


